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A closed equation for the probability density function of the velocity of particles is obtained in explicit form using the functional- 
differentiation method, taking into account the non-uniformity of the velocity field of the carrying turbulent flow. A system of 
continual equations of the balance of mass, momentum and second moments of the velocity pulsations of the dispersed phase 
is eoustrueted. The result is compared with published solutions for a uniform layer. @ 1997 Elsevier Science Ltd. All rights reserved. 

The interaction between particles and turbulent vortices of the carrying phase has previously [1-3] been 
described by the same diffusion operator in velocity space as for Brownian diffusion, while the kinetic 
equation for the probability density function is essentially identical with the usual Fokker-Planck 
equation. However, the Fokker-Planek equation only holds for modelling random processes that are 
~-correlated in time, and hence in practice for describing inertial particles, the dynamic-relaxation time 
of which considerably exceeds the integral turbulence timescale. An equation for the probability density 
function in a more general form than the Fokker-Planek equation was obtained in [4--6] for modelling 
turbulent gas-phase fields by Gaussian random processes with known correlation functions; however 
these equations ignore the spatial non-uniformity of the carrying flow. The kinetic equation was con- 
structed in [7] in implicit form, taking into account the non-uniformity of the flow, by summing the 
direct interactions using the method of renormalization perturbation theory. 

1. THE EQUATION FOR THE PROBABILITY DENSITY F U N C T I O N  
OF THE PARTICLE VELOCITY 

The motion of a single solid particle in gaseous flow is described by the following equations 

d R p  dv  p u -  v t, 
= + F  

dx = V p, dx  % (1.1) 

where x . R t, . . . . . .  is the time, and vp are the coordinate and velocity of the particle, u is the velocity of the 
carrying flow, xu is the particle dynanuc relaxation tLme, and F is the acceleration of the external force. 

Expressions (1.1) represent Langevin-type equations in which the velocity of the gas u is regarded 
as a random process. In order to change from a dynamic stochastic description of the individual particles 
to modelling of the statistical behaviour of the dispersed phase we will introduce the probability density 
function of the distribution over the particle coordinates and velocities 

¢D 
P = (p)  = ~ Y. (8(x - Rp(z))8(v - vp(x))) 

p 
(1.2) 

where to is the volume of a particle and f~ is the spatial volume considered. 
Averaging in (1.2) is carried out over the ensemble of samples of the random turbulent velocity fields 

of the carrying flow u(x, x). 
Differentiating (1.2) with respect to time, taking (1.1) into account, and representing the velocity of 

the gas in the forra of the averaged and pulsation components u - U + u ~, we obtain the following 
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equation for the probability density function 

(1.3) 

To determine the correlator ( u~p ) in (1.3) the velocity field of the carrying flow, as in [4, 5], is modelled 
by a Gaussian process with known autocorrelation function. Using the Furutz-Novikov formula for 
Gaussian random functions [8] we obtain 

( u:p ) = f ~ ( u~.(x,,g)u~ (xl,.Ci ) ) ( ~ltkS P('--""XX"r)(X,, x, ) )dx,  dx, 

/ 8p(x,x) ..p. ~ 8u t,j(x) (1.4) 

\ 8u~ (xl, x, ) tiu~ (x~,'q) 8u~ (Xl ,x~ ) 

To find the functional derivatives in (1.4) we use the solutions of  the equations of  motion of a single 
particle 

Rpi('C ) = fV pi('C I )d '~ 1 
o 

Applying the functional-differentiation operator to (1.5) we obtain a system of integral equations 
for determining the functional derivatives 

8RI,i ( X ) 
 -oxp( l - o x p  - × 

0 X ~xn [Ui(Rp(,r2),,t2)+ L, Fi(Rp(.r2),z2)] ~Rt'n('r2) dx 2 
6uj (x] ,x I ) 

(1.6) 

1 ~ ~ "~ X 
~uj(~ , 'q)  zu ~, % ) "ru ~j ~, % ) 

× _'r '~[ui(Rp('c2), 'c2)+'CuFi(Rp('c2), 'c2) ] 8Rpn(~2) dx2 
OXn 8uj (x I , xl ) (1.7) 

where H(x) is the Heaviside function: H(x < 0) = 0, H(x > O) = 1. 

To obtain explicit expressions for the functional derivatives and, correspondingly, for the correlator ( u'ip ), the 
integral terms in (1.6) and (1.7) were eliminated [4, 5] from consideration; however, the effect of these terms may 
be considerable in non-uniform flows. In [9] only the integral term in (1.6) was neglected, and to determine the 
integral term in (1.7) an approximation was proposed which effectively takes into account the non-uniformity of 
the carrying flow in terms of the non-uniformity of the field of the averaged velocity of the dispersed phase. 

In this paper, to solve integral equations (1.6) and (1.7) we will use an iterative method, taking the 
quantity TpAU/Ax as the small parameter, where Tp is the interaction time of the particles with the energy- 
containing vortices of the carrying flow, AU is the scale of variation of  the flow velocity and Ax is a 
characteristic spatial so.ale. We take the first term on the right-hand side of (1.6) as the first approximation 
of the solution of  Eq. (1.6), which is accurate for uniform flow. The second term of the iterative 
expansion, which takes the non-uniformity of  the flow into account up to first-order spatial derivatives, 
has the form 



~Uj(XI , t  I ) 
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F f ~l =~ij 1-exp -X-Xl  5(Xl-Rp( '~I))H( '~- '~I)+~(XI-lp(l l ))  I 
L t x. 33 ,, 

X 

x[.-exor-'-"" lr.-exp c ° I,, x u , i lL  ~ ")J~xj [ui(lp('c2)'z2)+zuFi(lp('~i)''~2)ldzl 
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(1.8) 

Using (1.8) we can write expression (1.7) in the form 

8v Pi(x) = 8q exp( - ' c -x ,  .')~i(x, - Rp(xl))H(x- ' ~ 1 ) +  8uj(xl,t~) t. t. % ) 

1 
-- e×pl---i~[ui(Rp(,c2),x2)+XuFi(Rp(x2),x2)]x 

x {.. 
, ,, , ,-,)}x..:., 

x ~xj[ui(Rp(x3),t3)+x,~(Rp(x3),x3)ldx3 dx 2 (1.9) 

We will introduce a two-time correlation function of the velocity pulsations of the gas along the 
trajectories of the ]particles 

~P( x -  x I) = ( ui(x' x)uj(RP( Xl )' xl )) (1.10) 
( u;(x,'c)uj(x,'O ) 

Then, assuming that, in view of the rapid decrease in the function ~F(~) as ~ increases, the main 
contribution to the integrals is governed by the region with ~ ~- 0, and assuming the external force to 
be homogeneous, we can obtain from (1.4) and (1.8)-(1.10) 

Here 

(u~p)=-(ui~ )(fu ~ + , i u g u  ~xk +Xulu oUn OP ~,<k £-: 

3x n ~xk ao j ) 

":.h. aU, a." 
ax k 3x,, 

+ 

(1.11) 

Y.=to, g .=J0- t0 ,  l , , --g.-t l  
hu = Jl + I1 - 2gu, m,, = JI + 211 + 12 - 3gu 

In = t n+l  
n • "l~u 0 

• n + l  niT, u "o 

Expression (1.11) holds for a value of the time that is long compared with the Lagrange integral timescale 
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of the turbulence TL. The eoefficientsfu, gu, 1,,, hu, mu in (1.11) define the degree of involvement of the 
particles in the maeropulsation motion of the carrying flow. To calculate these coefficients we need to 
know the correlation function ~F(~), characterized by the time during which the particles interact with 
the energy-containing vortices of the gas Tp = x~/0. For non-inertial particles the interaction time Tp 
with the velocity fluctuations is identical with the integral Lagrange turbulence scale T1, characterizing 
the decay of the energy-containing pulsations of the carrying flow with time. For inertial particles, when 
there is considerable averaged slipping of the particles with respect to the gaseous medium, Tp < TL. 

These coefficients satisfy the asymptotic relations 

x-~-~--*O: f~= l ,  g,,=l,,=J o, hu=mu=Ji (1.12) r. 

x'Lu.-.->**: fu=Jo, gu=Jl, lu=J 2, hu=J3, mu=J4 (1.13) r, 
Substituting (1.11) into (1.3) we obtain a closed kinetic equation for the probability density function 

of the particle velocity in non-uniform turbulent flow 

+lu~Un 32p ~.xuhuOV n O2p ~UJ ~Vn ~2P "1 (1.14) 

The terms on the left-hand side of Eq. (1.14) describe the change with time and the convection of 
the probability density function in phase space x, v, while the right-hand side describes the diffusion in 
phase space due to interaction between the particles and turbulent vortices of continuous phase. The 
last three terms on the right-hand side of (1.14) are directly related to the non-uniformity of the velocity 
field of the carrying flow. When these terms are not present Eq. (1.14) becomes the kinetic equation 
for the probability density function of the particle velocity [4--6]. The effect of flow non-uniformity, by 
(1.12), is particularly significant for small particles (xu "~ Tp), and by (1.13), the part played by the terms 
responsible for the non-uniformity for large particles (Xu/Tp "->'> 1) is small. 

2. THE EQUATIONS OF THE BALANCE OF MASS, M O M E N T U M  
AND SECOND MOMENTS OF THE PULSATIONS OF THE V E L O C I T Y  

OF THE D I S P E R S E D  PHASE 

By integrating Eq. (1.14) over velocity space we can obtain a system of continual equations for the 
average characteristics (moments) of the dispersed phase. The equation of conservation of mass has 
the form 

( + ) ~'C' + ((~Vk) 'k  = 0 (~ = ~ P a y ,  V i = !!,1 i P d v  (2.1) 

where • and V/are the average volume concentration and average components of the velocity of the 
dispersed phase respectively, and the comma in front of the subscript k denotes differentiation with 
respect to the coordinate Xk. 

The momentum balance equation can be written in the form 

vi ui  - vi opik 
-~)T, + Vk' Vi'k = --qik,k + + F i - (In tb), k (2.2) 

~u ~u 

Here 

1 
q o  = (v;u;) = $.J<v~ - V, )<~, S - v s ) e ~  
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are the turbulent stresses in the dispersed phase due to the involvement of particles in the pulsation 
motion of the continuous medium. The last term in (2.2) describes the turbulent diffusion of the particles. 
The particle turbulent diffusion tensor is defined by the expression 

D l~ij = Zu ( qij + guPij + ZuhuPik U j.k ), Pij = ( ui' u; ) (2.3) 

The equation for the second moments of the velocity pulsations has the form 

qijox + Vkqik'k + 1.~ ( ~P(V :V ~ V ~ ) ).k = --qik Vj.k - q jk Vi,k -- gu ( pik Vj,k + P jk Vi,k ) + 

+l u (PikU j,k "t" PjkUi,k ) -- '~uhuUn,k (Plk Vj,n + Pjk Vi,n ) + 

2 
+'[UmuUn,k (PikU j,n + PjkUi,n ) + ~ (fu Pij - qij ) 

~u 
(2.4) 

Equation (2.4) describes the convective and diffusion transfer, the generation of pulsations from the 
averaged non-uniform motion, and the generation of fluctuations resulting from the involvement of 
particles in the pulsation motion of the carrying flow and dissipation of turbulent energy of the dispersed 
phase due to the work done by the interphase interaction force. The equations of conservation of mass 
and momentum of the dispersed phase are identical with the corresponding equations obtained 
previously [4, 5], while the equation for the second moments of the velocity pulsations, like the expression 
for the particle diffusion tensor, contains additional terms due to the non-uniformity of the caruhng 
flow. 

In the limit of very fine particles, we obtain the following expression for the velocity of a non-inertial 
impurity 

V~ = U i - Di~ (In ~),k (2.5) 

By (2.5) the velocity of non-inertial particles is made up of convective and diffusion components. 
The turbulent diffusion tensor of a non-inertial impurity (a passive scalar), by (2.3), is equal to 

D o = lim Dpij = TLPij + XPijUj.k, Z = ~ V ( ~ ) ~  (2.6) 
X u ~0 0 

From (2.1) and (2.5) we obtain the diffusion equation for a non-inertial impurity 

0~ / ~ + (~Uk).k = (Dik~,k).i (2.7) 

Equation (2.7) is the usual equation of the turbulent diffusion of a passive scalar, in which the effect 
of the non-uniformity of the flow on the turbulent transfer mechanism is taken into account by the 
presence of the second term in (2.6). 

3. A UNIFORM SHEAR LAYER 

We will consider the motion of particles in a uniform shear layer. In this case, because of the simplicity 
of the flow in question, exact expressions can be obtained for the diffusion tensor and for the turbulent 
stresses of the dispersed phase. The flow is assumed to take place in the x direction and has a constant 
shear velocity in the y direction, i.e. T = dU:,/dy = const. 

The components of the turbulent diffusion tensor of a non-inertial impurity, by (2.6), in this case 
take the form 

Dx~ = TLP~, + XPxyY, Dxy = TLpx.v + XP~.y, Dyx = T~Px.v, Dyy = TLPyy, 1) ,  = T L p ,  (3.1) 

Expressions (3.1) are identical with the relations obtained previously in [10], which extend the 
expressions for the turbulent diffusion coefficients of a passive scalar in terms of the Lagrangian 
correlation moments of the velocity pulsations for uniform steady motion without shear of the mean 
velocity [11] to the case of the simplest shear flow with a constant shear of the mean velocity. 
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The components of the turbulent diffusion tensor of inertial particles (2.3) in a uniform shear layer 
are represented in the form 

D pxx 2 2 = xu (q~  + guPxx) + Xuhupxy¥, Dp~. = x u (qx), + guP~.) + "ruhuPyy'Y 

Dpyx = "cufq,. + guPxy), Dpyy = x,,(qyy + gupyy),Dpzz = x,,(qzz + guPzz) (3.2) 

It should be noted that the turbulent diffusion tensors of both inertial and non-inertial particles (2.3) 
and (2.6) are asymmetric; this can also he clearly seen from relations (3.2). 

The asymmetry of the turbulent diffusion tensor of a passive scalar in a uniform shear layer has been 
noted previously in [10]; a similar result was obtained in [12] when analysing the dispersion of inertial 
particles in a random field with a constant shear of the mean velocity by using the eigenvalue method. 

For flow with a uniform shear the system of differential equations for the second moments of the 
velocity pulsations of the dispersed phase (2.4) reduces to a system of algebraic equations, from which 
we obtain 

"[u 
q~ = fuP~ - TLPxy"[ p + 'rulup~o"Y + --~ P)y (TL'Y p - 'gulu'Y)~ p 

Tt. 'tu dVx 
q " =  f u P x Y - - ' 2  P'~"~lP + " ~  lup '~ '  "Yt'= dy 

(3.3) 

qyy = f u P y y ,  qzz = f u P z z  (3.4) 

Expressions (3.3) take into account, in explicit form, the effect of shears of the mean velocities of 
the continuous and dispersed phases on the intensity of longitudinal velocity pulsations in the shear 
stress of the particles. As can be seen from (3.4), shear has no effect on the intensity of the velocity 
pulsations of the particles in the transverse and transversal directions. Expressions (3.3) and (3.4) are 
identical with the corresponding relations for turbulent stresses of particles in a layer with a constant 
shear, obtained in [13] from the continual equations of the balance of the second moments of the velocity 
pulsations of the dispersed phase [6]. 

Assuming that ~/p = ~, Eqs (3.3) can be represented in the form 

qxx = fuPxx-zu(fu + l|)Pxy'Y+~'~(fu + ll)pvv~/2,qxv = fuPxv-'~(fu . . . .  + II)Pyy¥ (3.5) 

It can be seen from (3.3)--(3.5) that the anisotropy of the turbulent pulsations of the dispersed phase 
increases both as the shear of the mean velocity of the flow increases and as the particle inertia increases. 
It is interesting to note that in shear flow the intensity of the longitudinal velocity pulsations of fairly 
inertial particles may exceed the corresponding intensity of the turbulence of the carrying medium. This 
effect is due to the generation of particle velocity fluctuations in the longitudinal direction from the 
averaged motion due to velocity shear. 

Using relations (3.4) and (3.5) the components of the turbulent diffusion tensor of the particles (3.2) 
can be written in the form 

3 

2 _2Jo)Pxy,y+x~2(f  u + 11 )pyy~/2 Dpxx = Tt.px~ + x~(f~ + Jl 

2 

"gu .. Op,3" .. Opzz Dp).x = Tt.pxy-"~(fu + ll)PvvY, = TL?,.,,, = TLpzz 

(3.6) 

Formulae (3.6) agree with the relations obtained in [12, 13] for the components of the diffusion tensor 
of particles in a uniform shear layer. 

Hence, our analysis shows that for turbulent flow with constant shear one can obtain from the kinetic 
equation for the probability density function (1.14) expressions for the diffusion tensor and second 
moments of the velocity pulsations of particles, which agree with published solutions. 
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